QUANTITATIVE ANALYSIS

CPA
CCP
CIFA

PART II

Section 4

STUDY TEXT

KASNEB JULY 2018 SYLLABUS

Revised on: January 2019
CONTENT

1. Basic mathematical techniques
 Functions
 - Functions, equations and graphs: Linear, quadratic, cubic, exponential and logarithmic
 - Application of mathematical functions in solving business problems

 Matrix algebra
 - Types and operations (addition, subtraction, multiplication, transposition, and inversion)
 - Application of matrices: statistical modelling, Markov analysis, input-output analysis and general applications

 Calculus
 - Differentiation
 • Rules of differentiation (general rule, chain, product, quotient)
 • Differentiation of exponential and logarithmic functions
 • Higher order derivatives: Turning points (maxima and minima)
 • Ordinary derivatives and their applications
 • Partial derivatives and their applications
 • Constrained Optimisation; lagrangian multiplier
 - Integration
 • Rules of integration
 • Applications of integration to business problems

2. Probability
 Set theory
 - Types of sets
 - Set description: Enumeration and descriptive properties of sets
 - Operations of sets: Union, intersection, complement and difference
 - Venn diagram

 Probability theory and distribution
 - Definitions: Event, outcome, experiment, sample space
 - Types of events: Elementary, compound, dependent, independent, mutually exclusive, exhaustive, mutually inclusive
 - Laws of probability: Additive and multiplicative rules - Baye's Theorem
 - Probability trees
 - Expected value, variance, standard deviation and coefficient of variation using frequency and probability

 Probability distributions
 - Discrete and continuous probability distributions (uniform, normal, binomial, poisson and exponential)
 - Application of probability to business problems
3. Hypothesis testing and estimation
 - Hypothesis tests on the mean (when population standard deviation is unknown)
 - Hypothesis tests on proportions
 - Hypothesis tests on the difference between means (independent samples)
 - Hypothesis tests on the difference between means (matched pairs)
 - Hypothesis tests on the difference between two proportions

4. Correlation and regression analysis
 Correlation analysis
 - Scatter diagrams
 - Measures of correlation - product moment and rank correlation coefficients (Pearson and Spearman)

 Regression analysis
 - Assumptions of linear regression analysis
 - Coefficient of determination, standard error of the estimate, standard error of the slope, t and F statistics
 - Computer output of linear regression
 - T-ratios and confidence interval of the coefficients
 - Analysis of Variances (ANOVA)
 - Simple and multiple linear regression analysis

5. Time series
 - Definition of time series
 - Components of time series (circular, seasonal, cyclical, irregular/random, trend)
 - Application of time series
 - Methods of fitting trend: free hand, semi-averages, moving averages, least squares methods
 - Models- additive and multiplicative models
 - Measurement of seasonal variation using additive and multiplicative models
 - Forecasting time series value using moving averages, ordinary least squares method and exponential smoothing
 - Comparison and application of forecasts for different techniques

6. Linear programming
 - Definition of decision variables, objective function and constraints
 - Assumptions of linear programming
 - Solving linear programming using graphical method
 - Solving linear programming using simplex method
 - Sensitivity analysis and economic meaning of shadow prices in business situations
 - Interpretation of computer assisted solutions
 - Transportation and assignment problems

7. Decision theory
 - Decision process
- Decision making environment - deterministic situation (certainty), analytical hierarchical approach (AHA), risk and uncertainty, stochastic situations (risk), situations of uncertainty
- Decision making under uncertainty - maximin, maximax, minimax regret, Hurwicz decision rule, Laplace decision rule
- Decision making under risk - expected monetary value, expected opportunity loss, minimising risk using coefficient of variation, expected value of perfect information
- Decision trees - sequential decision, expected value of sample information
- Limitations of expected monetary value criteria

8. Game theory
 - Assumptions of game theory
 - Zero sum games
 - Pure strategy games (saddle point)
 - Mixed strategy games (joint probability approach)
 - Dominance, graphical reduction of a game
 - Value of the game.
 - Non zero sum games
 - Limitations of game theory

9. Network planning and analysis
 - Basic concepts - network, activity, event
 - Activity sequencing and network diagram
 - Critical path analysis (CPA)
 - Float and its importance
 - Crashing of activity/project completion time
 - Project evaluation and review technique (PERT)
 - Resource scheduling (levelling) and Gantt charts
 - Limitations and advantages of CPA and PERT

10. Queuing theory
 - Components/elements of a queue: arrival rate, service rate, departure, customer behaviour, service discipline, 'finite and infinite queues, traffic intensity
 - Elementary single server queuing systems
 - Finite capacity queuing systems
 - Multiple server queues

11. Simulation
 - Types of simulation
 - Variables in a simulation model
 - Construction of a simulation model
 - Monte Carlo simulation
 - Random numbers selection
 - Simple queuing simulation: Single server, single channel "first come first served" (FCFS) model
 - Application of simulation models
CONTENT

<table>
<thead>
<tr>
<th>Topic 1: Basic mathematical techniques</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 2: Probability</td>
<td>100</td>
</tr>
<tr>
<td>Topic 3: Hypothesis testing and estimation</td>
<td>151</td>
</tr>
<tr>
<td>Topic 4: Correlation and regression analysis</td>
<td>162</td>
</tr>
<tr>
<td>Topic 5: Time series</td>
<td>199</td>
</tr>
<tr>
<td>Topic 6: Linear programming</td>
<td>227</td>
</tr>
<tr>
<td>Topic 7: Decision theory</td>
<td>280</td>
</tr>
<tr>
<td>Topic 8: Game theory</td>
<td>301</td>
</tr>
<tr>
<td>Topic 9: Network planning and analysis</td>
<td>310</td>
</tr>
<tr>
<td>Topic 10: Queuing theory</td>
<td>330</td>
</tr>
<tr>
<td>Topic 11: Simulation</td>
<td>345</td>
</tr>
<tr>
<td>Topic 12: Emerging issues and trends</td>
<td></td>
</tr>
</tbody>
</table>